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Abstract

Complex spatial heterogeneity of ecological systems is difficult to capture and interpret using global models alone. For this
reason, recent attention has been paid to local spatial modeling techniques. We used one local modeling approach, geographically
weighted regression (GWR), to investigate the effects of local spatial heterogeneity on multivariate relationships of white-tailed
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deer distribution using land cover patch metrics and climate factors. The results of these analyses quantify differen
contributions of model parameters to estimates of deer density over space. A GWR model with local kernel bandw
compared to a GWR model with global kernel bandwidth and an ordinary least-squares regression (OLS) mode
same parameters to evaluate their relative abilities in modeling deer distributions. The results indicated that the GW
predicted deer density better than the traditional ordinary least-squares model and also provided useful information
local environmental processes affecting deer distribution. GWR model comparisons showed that the local kernel b
GWR model was more realistic than the global kernel bandwidth GWR model, as the latter exaggerated local spatial
The parameter estimates and model statistics (e.g., modelR2) of the GWR models were mapped using geographic inform
systems (GIS) to illustrate local spatial variation in the regression relationship and to identify causes of large-sca
misspecifications and low estimation efficiencies.
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1. Introduction

Understanding spatial distribution patterns of
wildlife, such as white-tailed deer (Odocoileus virgini-
anus), is a critical step toward identifying key relation-
ships between wildlife and their impacts (e.g., brows-
ing, bark stripping) on natural resources (McShea et
al., 1997; Liu and Taylor, 2002). However, difficul-
ties in assessing wildlife distribution make wildlife
management complicated, especially in forested areas
(Radeloff et al., 1999). In order to predict wildlife dis-
tribution patterns accurately, various modeling meth-
ods have been employed to take advantage of mapped
vegetation associations (e.g., land cover). Techniques
used for these modeling efforts include regression trees
(Stankovski et al., 1998), poisson regression (White et
al., 2004), logistic multiple regression (Pearce, 1987;
Augustin et al., 1996), and linear multiple regression
(Radeloff et al., 1999). However, the primary means of
wildlife distribution modeling is ordinary least-squares
regression (OLS;Coppolillo, 2000; Buckland et al.,
2001). The two general assumptions of OLS are that
observations are independent and variance is homoge-
neous among samples.

Unfortunately, the assumptions of independence
and constant variance of OLS are often violated due to
spatial effects on variables sampled across a landscape
(Gribko et al., 1999). Spatial effects consist of spatial
autocorrelation (i.e., spatial dependency) and spatial
heterogeneity (i.e., spatial nonstationarity) (Anselin,
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and Griffith, 1988; Anselin, 1990). It is related to loca-
tions in space, missing variables, and functional mis-
specification (Anselin, 1988; Fotheringham, 1997). If
spatial heterogeneity is not considered in regression
models, it will result in biased parameter estimates,
misleading significance tests, and suboptimal predic-
tion (Anselin and Griffith, 1988).

Recently, a simple but powerful method called Geo-
graphically weighted regression (GWR) has been pro-
posed for exploring spatial heterogeneity (Brunsdon et
al., 1996; Fotheringham et al., 2000, 2002). GWR is
an extension of the traditional regression framework
(Zhang and Shi, 2004), and operates by estimating
local rather than global parameters at each point on
a landscape. Hence, GWR explicitly incorporates the
spatial locations of data, and therefore, can be used
to investigate the influence of spatial heterogeneity on
model fit. The local estimation of model parameters
is derived by weighting all neighboring observations
using a decreasing function of distance. In this way,
the impacts of the neighbors nearby are stronger than
those farther away. Additionally, a threshold, called the
kernel bandwidth, is specified to indicate the distance
beyond which neighbors no longer have influence on
local estimates.

As originally presented, the GWR method used
a global kernel bandwidth, which means the kernel
bandwidth was constant across locations (Brunsdon et
al., 1996; Fotheringham et al., 2000, 2002). Recently,
another approach was proposed byPàez et al. (2002a)
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ation is defined as a situation in which one varia
s spatially related to the same variable located ne
obler’s law of geography gives a more direct interp
ation: “Everything is related to everything, but n
hings are more related than distant things” (Anselin,
988). When spatial autocorrelation exists in the e

erms of a regression model, it biases the estima
f error variance (Shi and Zhang, 2003). However
egression coefficients remain unbiased. Thus, sp
utocorrelation elicits misleading significance tests
easures of model fit (Anselin and Griffith, 1988).
patial heterogeneity, on the other hand, is define

the complexity and variability of a system prope
n space” (Li and Reynolds, 1994, p. 2446). Spatia
eterogeneity, therefore, explains systematic cha

n the contribution of different model parameters
esponses of predicted variables over space (Anselin
o choose different local kernel bandwidths at diffe
ocations. Given that most landscapes are chara
zed by spatial heterogeneity, it is probable that lo
stimation of parameters is more realistic than gl
stimation.

There are several advantages of GWR over o
vailable methods of spatial prediction. In addition
erformance measures (e.g., goodness-of-fit,t-values)
f traditional regression methods, GWR produces
f parameter estimates andR2 values at each sam
led point. By mapping these parameter estim
nd model statistics using visualization tools (e
IS), local spatial variation in the regression relat

hips can be investigated (e.g.,Brunsdon et al., 1996
otheringham and Brunsdon, 1999; Fotheringha
l., 2000; P̀aez et al., 2002a). GWR, therefore, provide
useful tool for ecologists to explore wildlife-habi

ssociations and how they vary spatially across a l
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scape. This technique also provides opportunities for
ecologists to identify causes of large-scale model mis-
specifications and low estimation efficiencies.

In this paper, we provide an overview of the GWR
methodology for modeling spatial heterogeneity of
ecological data using the spatial distribution of white-
tailed deer as a case study. We began with a linear
regression model developed to predict deer density as
a function of landscape structure defined by land cover
and climate. Our goal was to model the relationship
between deer density and landscape descriptions over
areas of use. The quantified relationship was desired
to identify ways of moderating browsing pressure on
vegetation regeneration via strategic modifications to
deer density and habitat. To compare spatial model-
ing approaches, we fit the linear regression model with
OLS and two different GWR methods (i.e., local kernel
bandwidth and global kernel bandwidth). We compared
the results by testing model fit for the three methods
using typical performance measures (e.g., goodness-

of-fit), and through mapping parameter estimates used
to predict white-tailed deer distribution.

2. Methods

2.1. Study area

Our study area included eight counties (i.e., Baraga,
Dickinson, Gogebic, Houghton, Iron, Keweenaw,
Menominee and Ontongaon) in Michigan’s Upper
Peninsula (UP) (Fig. 1). The 2345 km2 area is charac-
terized by a spatial mosaic of forest stands that include
northern hardwood (sugar maple, American beech,
white ash, yellow birch, basswood), wetland hard-
wood/conifer (black ash, red maple), and aspen/birch
among others. These eight counties were chosen
because they are dominated by forests and historical
data indicates high spatial variation in deer density over
the area (Doepker et al., 1994). This heterogeneous dis-

igan (e roups).
Fig. 1. Map of the study area in the Upper Peninsula, Mich
 ach dot indicates a township section sampled for deer pellet g
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tribution implies that different ecological factors (e.g.,
local climate, forest type) influence deer density (e.g.,
Nelson and Mech, 1981; Kirchhoff and Schoen, 1987).

2.2. Deer density

We used surveys for deer pellet groups to esti-
mate relative deer density in winter. Deer pellet count
data used in this study were collected in the spring
of 1991 by members of the Michigan Department
of Natural Resources (MDNR). Prior to data collec-
tion, the region was classified into three strata of deer
abundance, which were sampled as separate entities.
The region was further divided into township sections
of 1069 m× 1069 m or 2.59 km2 (1 square mile). The
number of sample township sections sampled within
each stratum was based upon its area and the variabil-
ity of pellet density observed in previous years (Hill,
1999). Due to land survey corrections and the irreg-
ular shape of lakeshores, some sections may contain
less than 2.59 km2 of land area, but the township sec-
tion was considered the smallest spatial unit for these
analyses.

Specific sections identified for sampling were
selected randomly within strata so that each section
within a stratum had the same probability of being cho-
sen. Within each selected township section, a series of
five 80.54 m2 (1/50-acre) rectangular plots were ran-
domly located and surveyed for groups of deer pellets.
These five samples were not georeferenced within sec-
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tinguish new pellet groups from the old in areas where
leaf cover was sparse (Hill, 1999). For our data set, this
period of pellet deposition was assumed to be 187 days.
Thus:

Estimated deer density (per section)

= average pellet groups× 32, 000

187× 13.4
(1)

2.3. Ecological variables

The primary limiting factors affecting winter deer
density in the study area include hunting, food avail-
ability, winter cover and climate (Xie et al., 1999).
Because no spatially compatible estimates of hunting
effort were available for this area, we excluded hunt-
ing from these analyses. Increased snow depth and
decreased temperatures increase the mortality of deer
in the UP as a function of increased energy demands
(Ozoga and Gysel, 1972; Nelson and Mech, 1981;
Doepker et al., 1994). Thus, we used local estimates
of average snow depth and minimum temperature as
predictor variables in our regression model. Climate
statistics were 30-year averages (1971–2000) calcu-
lated between November 1st and April 30th (ZedX
Inc., http://www.zedxinc.com/, 1 km× 1 km resolu-
tion). This period covers 181 days, similar to the period
of pellet data used in this study (187 days).

High resolution estimates of average snow depth
and minimum temperature in each monthly database
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To use pellet count data to estimate deer density
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hey were deposited. The assumed pellet depos
ate for the UP was 13.4 times per deer in a 24-h pe
Hill, 1999). In our study area, the time period o
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s beginning after leaf fall in the previous autumn
nding on the average date of pellet surveys. We c

o define the time period in this way because fa
eaves form a mat that hides groups dropped earli
he year. Hence, only those groups dropped after
all are visible. However, biologists were trained to d
ere generated by applying a mathematical a
ithm to the 30-year (1971–2000) climatologi
tation records (National Climatic Data Cen
ttp://www.ncdc.noaa.gov/oa/ncdc.html). These est
ates were compared to climate station data colle

n 1991 (http://www.ncdc.noaa.gov/oa/ncdc.html). A
-test indicated the absence of significant differen
or average snow depth and the minimum temp
ure between the 30-year averages and 1991 sa
p-value < 0.05). In order to make our model more r
esentative, we used the interpolated 30-year ave
f snow depth and minimum temperature in our reg
ion model.

Deer respond to wintertime conditions by conc
rating in deeryards. In the UP, deeryards are typic
hite cedar swamps. These areas provide refuge
eavy snow, high winds, and radiant heat loss (Blouch,
984). In mild winters or where cedar swamps are la
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ing, mixed conifer or mixed hardwood/conifer can also
serve as deeryards (Blouch, 1984). While dense conifer
forests provide winter cover for deer, nearby hardwood
stands can provide browse for deer to maintain fat stores
over winter (Blouch, 1984). Fatter deer are capable of
enduring harsher winter conditions (Ozoga and Gysel,
1972).

To include data describing the spatial distribution of
potential deeryards and hardwood stands in our model,
we used a land cover map available in grid format from
the state of Michigan (http://www.mcgi.state.mi.us/).
This map was derived from 1991 Landsat 5 TM
imagery consisting of 30 m× 30 m pixels having 27
landcover classes with a published accuracy of 90.2%
(http://www.mcgi.state.mi.us/). Forest cover in the
eight study counties was 84.4%. Of that portion, north-
ern hardwood and wetland hardwood/conifer forest
accounted for 62.7% and the other 37.3% was com-
posed of mixed conifer, white cedar, mixed pine, jack
pine, hemlock, etc. The remaining non-forest cover
was shrubland, residential, agricultural, bare land and
water.

Landcover maps were resampled to standardize
the number of landcover pixels per section used in
the following analyses. We resampled the landcover
map to a pixel size of 40.225 m× 40.225 m using
ArcView 3.2 (Environmental Systems Research Insti-
tute Inc.). Therefore, each section (1069 m× 1069 m)
consisted of exactly the same number of 40.225 m pix-
els (40 pixels× 40 pixels). Pixel values in the resam-
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Three methods are available for contextual correc-
tion: (1) establishing a buffer zone (Sterner et al.,
1986), (2) using a toroidal edge correction (Ripley,
1979, 1981), and (3) using an edge correction by
weighting (Getis and Franklin, 1987; Andersen, 1992).
The second method is used when there is no neigh-
boring information available. The third method is
not suitable for this study because of the complex-
ity of patch metrics (see below). In this study, the
easiest and most practical way for contextual cor-
rection is to use a buffer zone. Each sampled town-
ship section (1× 1 mile = 1.6× 1.6 km) was, therefore,
extended along all edges by an additional section. Con-
sequentially, the sampled section and its eight neigh-
boring sections composed one sampling unit for sub-
sequent analyses. The resulting sampling unit (3× 3
sections = 23 km2) provides an area large enough to
represent deer habitat features relative to the average
deer’s winter home range of 18.6 km2 (VanDeelen et
al., 1998).

Within each sampling unit (nine township sec-
tions), we calculated several landscape indices for
each landcover class. We chose these indices based
on knowledge of deer life history traits. Deer pre-
fer to forage along forest edges (e.g.,Kie et al.,
2002), therefore, landscape features such as the length
of edges and the variation in patch area within a sam-
pled section were considered important determinants
of deer distribution. Specific patch features (e.g., patch
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Fig. 2. Estimated deer density (number of deer/km2) during 1991 in the Upper Peninsula, MI.

variogram model (S-plus 6.2, Insightful Corporation)
manually fitted with Range = 35,000 m, Nugget = 45,
Sill = 550. We used the resulting kriged deer density
for each sampling unit (Fig. 2) as the dependent vari-
able in the following deer distribution models.

2.4. Modeling techniques

We employed several statistical techniques to
develop the winter white-tailed deer distribution model.
First, we used correlation analysis and stepwise regres-
sion to remove unimportant and redundant predictor
variables. Second, we fit the OLS and global and local
kernel bandwidth GWR models using the remaining
variables as predictor variables and the kriged deer den-
sity as dependent variable. Third, we evaluated the OLS
model fit through residual analysis and the Shapiro-
Wilk test. Fourth, we compared the difference between
local and global kernel bandwidth GWR models with
their kernel bandwidth and the parameter estimates.
Fifth, we tested local nonstationary using the parame-
ter variation test and the locational heterogeneity test.
Finally, we evaluated the improvement of GWR over

OLS using goodness-of-fit test and the Lagrange Mul-
tiplier (LM) test.

2.4.1. Correlation analysis and stepwise
regression

Before performing correlation analysis and step-
wise regression, we used a log transform to normalize
skewed dependent and predictor variables. Correlation
analysis was employed to reduce the number of predic-
tor variables and to ensure independence of predictor
variables used later in linear regression models. We
kept predictor variables for further analysis only if
Pearson correlation coefficients with deer density were
greater than +0.15 or less than−0.15. Also, if correla-
tion coefficients between predictor variables exceeded
0.65, we removed redundant variables (i.e., lower Pear-
son correlation coefficient with deer density).

We used backward stepwise regression to remove
non-significant predictor variables after the correlation
analysis. Using this approach, we kept all predictor
variables in the model at the beginning of the step-
wise regression. During each step of this analysis, we
removed one predictor variable, if its significance level
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was greater than 0.15. We chose the significance level
of 0.15, because the traditional alpha level of 0.05 is
inadequate when building stepwise regression mod-
els. It often excludes important variables from the final
equation (Hosmer and Lemeshow, 1989). We repeated
the process until all the remaining predictor variables
were statistically significant.

2.4.2. Ordinary least squares regression analysis
The following linear regression model was used:

yi = β0 +
p∑

j=1

Xijβj + εi (2)

whereβ0, β1, . . ., βp are parameters;ε1, ε2, . . ., εn are
random error terms whose distribution areN(0, �2I)
assuming constant variance, withI denoting an iden-
tity matrix. yi is the dependent variable andXij, the
independent variable (i = 1, 2, . . ., n and j = 1, 2, . . .,
p). In this model, with the assumption of independent
observations and constant variance, we obtained the
OLS estimate ofβi as

β̂i = (XTX)
−1

XTy (3)

where superscript T denotes the transpose of a matrix.
After the estimation, we interpreted the model statistics
(e.g., parameter estimates,R2) statistically and ecolog-
ically.

2
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form:

wij = exp(−τd2
ij). (6)

wheredij is the distance between the subjecti and its
neighboring observationj andτ, the kernel bandwidth.

A GWR model can use either a global kernel band-
width (i.e., a constant over space) or local kernel band-
widths (i.e., the threshold varies spatially). A global
kernel bandwidth can be obtained in three ways: (1)
a predefined bandwidth based on existing knowledge,
(2) a cross-validation procedure, or (3) a method that
minimizes the Akaike Information Criterion (AIC) for
fitting the regression model (Brunsdon et al., 1998;
Fotheringham et al., 2000, 2002). There are some lim-
itations in using these methods of kernel bandwidth
estimation. Although the use of a predefined band-
width makes computation simpler, its utility depends
on the researchers’ experience and ability to choose
the “best” subjective bandwidth. The cross-validation
procedure is an objective approach, however, a rea-
sonable global kernel bandwidth is sometimes com-
putationally impossible (Pàez et al., 2002a). Also, the
cross-validation and AIC methods in GWR are time
consuming when applied to large number of samples.

Although there were some limitations in the cross-
validation and AIC methods, they were still applicable
for our data. Generally, there is no significant differ-
ence between the kernel bandwidths obtained from
these two methods (Fotheringham et al., 1998, 2002).
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.4.3. Local modeling and analysis using GWR
odel
.4.3.1. Model fitting. Among other differences, OL
nd GWR differ in that the latter uses a weight matri

he estimation procedure (Brunsdon et al., 1996, 199
àez et al., 2002a). Assume the weight matrix is:

i(ui, vi) =




wi1 0 · · · 0

0 wi2 · · · 0
...

... wij

...

0 0 · · · win




(4)

here (ui, vi) are the coordinates of locationi. Then
he estimator ofβi given by GWR is:

ˆ
i = (XTWi(ui, vi)X)

−1
XTWi(ui, vi)y (5)

In general, the weighting function, called the k
el function, is taken as the exponential distance-d
he cross-validation procedure was, therefore, us
btain the global kernel bandwidth using a comp
oftware program called GWR 2.0. Detailed inf
ation on the software is available at the web
ttp://www.ncl.ac.uk/geps/research/geography/gw.

In order to obtain local kernel bandwidths,Pàez e
l. (2002a)proposed a method by assuming that lo
onstationarity resulted from nonconstance of v
nces among the observations. Using this appro

he spatial weights are modified in the GWR regres
epending on the variation of local kernel bandwid
pecifically, the local kernel bandwidth is estima
sing the maximum likelihood method (for deta
onsultPàez et al., 2002a), allowing the kernel band
idth to vary over space. This method was show
rovide results with greater accuracy than the gl
ernel bandwidth (Brunsdon et al., 1996; Fotheringh
t al., 2000, 2002). We computed the local kernel ban
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widths for each sampling unit using a Matlab (The
MathWorks Inc.) extension developed byPàez et al.
(2002a,b). In the local regression analyses, we fitted
Eq.(2) to the deer pellet count data by GWR methods
with the global and local kernel bandwidth.

2.4.3.2. Comparison between local and global GWR
models. The goal of comparing GWR models was to
identify whether the local or global kernel bandwidth
GWR model could more accurately predict white-
tailed deer distribution. The major differences between
these two models were the parameter estimates and
the kernel bandwidth. We first conducted a comparison
between the range of the kernel bandwidth and the rate
of decay in the weighting function for measuring the
performance of these GWR models. Second, we com-
pared variations of localized parameter estimates quan-
titatively. Finally, we explored dissimilarity between
these two models visually, using contour plots created
with ArcView 3.2 (Environmental Systems Research
Institute Inc.).

2.4.3.3. Local nonstationarity test. The objective of
the test for local nonstationarity was to determine if
parameter estimates in the GWR model were signif-
icantly different across the study area (Brunsdon et
al., 1996; Leung et al., 2000). Even though localized
parameter estimates may vary over space, this variation
may not be significant. If estimates are not significantly
different, then the GWR model is the same as the OLS
m : (1)
t
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We tested local nonstationarity of parameter estimates
in the local kernel bandwidth GWR model usingPàez
et al. (2002a,b)Matlab extension.

2.4.3.4. Goodness-of-fit test. Given the greater flexi-
bility of the GWR coefficients over space, GWR always
provides a better model fit in terms of the residual sum
of squares (Brunsdon et al., 1996; Fotheringham et
al., 2002). However, it is important to test whether the
GWR models offer a statistically significant improve-
ment over the OLS model.Brunsdon et al. (1996)and
Leung et al. (2000)proposed approximateF-tests to
test whether there is an improvement of GWR with a
global kernel bandwidth over OLS. We performed this
test using the computer software program, GWR 2.0.

For the local kernel bandwidth GWR model, the
improvement over OLS was tested using the Lagrange
Multiplier test (Breusch and Pagan, 1979, 1980; Pàez
et al., 2002a), which is different from the aboveF-tests.
The null hypothesis of the LM test is whether the local
kernel bandwidth is significantly different from 0 at
each sampling unit. If there is no significant difference
between the OLS model and the GWR model at that
location, then the null hypothesis is not rejected. The
LM test is available withPàez et al. (2002a,b)Matlab
extension.

3. Results
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eeLeung et al., 2000). These two tests are develop
o test local nonstationarity for the global kernel ba
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reedomn–p, wheren is the number of observatio
ndp is the number of parameters in the GWR mo
.1. Linear regression analysis

After correlation analysis and stepwise regress
ix predictor variables remained in the linear regres
odel. They were snow depth (SD), patch area of w

edar canopy cover >70% (CA), patch area of m
ine (MA), northern hardwood patch size coeffici
f variance (HV), wetland hardwood/conifer patch s
oefficient of variance (WV), and average perime
rea ratio (PA).

Because the deer pellet count data were colle
sing stratified sampling (three regional deer den
trata), we considered two dummy variables in
inear regression model to account for the differe
reated by the stratification. The regression ana
ndicated that thep-values of the two dummy variabl
ere greater than 0.05. For this reason, we did
onsider them in the model. Therefore, the final
ar regression model was fitted with the OLS met
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Fig. 3. Quantile-quantile normal plot of the OLS model residual.

as follows:

log (DD) = 0.1922
(0.7549)

+ 0.0011HV
(0.0011)

+ 0.0039WV
(<0.0001)

+ 0.0032MA
(0.0070)

+ 0.0416CA
(0.0008)

+ 0.1391 log (PA)
(0.0719)

− 0.0203SD
(0.0461)

(7)

where DD: deer density, log is the natural logarithm,
and values in the parentheses arep-values. This linear
regression model fit moderately well. The multipleR2

was 0.4038 withp-value <0.0001. The intercept and
the average perimeter-area ratio were not significant at
the significance level ofα = 0.05. All other predictor
variables were significant.

Model fit was further supported through an analysis
of residuals. A quantile-quantile plot of the residuals
was almost a straight line (Fig. 3) and the Shapiro-
Wilk test did not reject the normality of the residual
distribution (W = 0.9947,p-value = 0.7657). Therefore,
the linear model described the deer pellet count data
well. However, the shape of the residual plot was close
to triangular (Fig. 4), indicating the presence of unequal
variance (heteroscedasticity) (Hair et al., 1995, p. 113).
One remedy to this problem is to use weights in the
estimation of parameter values in the OLS model. As
mentioned above, GWR is one method of determining
the weights for OLS using spatial information.

3.2. GWR kernel bandwidth

ss-
v of

Fig. 4. Residual plot of the observed deer density and the predicted
deer density with the OLS model (DD: deer density).

2.2446. For the local kernel bandwidth GWR model,
we used all 181 locations to obtainτ for each sampling
unit using the maximum likelihood method (Fig. 5;
Pàez et al., 2002a).

3.3. Comparison between local and global kernel
bandwidth GWR models

The kernel bandwidths and the parameter esti-
mates indicate that differences exist between local and
global kernel bandwidth GWR models (Fig. 5 and
Table 1). The range of local kernel bandwidths (τ) was
0.0032–0.5366 (Table 1). The maximum ofτ (0.5366)
from the local kernel bandwidth GWR model was far
smaller than the global kernel bandwidth (2.2446).

The range of parameter estimates from the global
kernel bandwidth GWR model was much wider than
that from the local kernel bandwidth GWR model
(Table 1). The GWR model produced localized esti-
mates of the seven model coefficients (β0, β1, β2,
β3, β4, β5, andβ6) and modelR2 for each location
(Table 1). We mapped coefficients withp-values < 0.05
and R2 values of the local and global kernel band-
width GWR models using contour plots in ArcView
3.2 (Environmental Systems Research Institute Inc.;
Fig. 6) to illustrate the spatial heterogeneity of these
predictor variables.

Contour plots of localized parameter estimates from
the local kernel bandwidth GWR model permit visu-
a the
s

For the global kernel bandwidth GWR model, cro
alidation estimated a global kernel bandwidth
lization of their influence on deer density across
tudy area. Under the impact of snow depth (Fig. 6a),



180 H. Shi et al. / Ecological Modelling 190 (2006) 171–189

Fig. 5. Contour plot of local kernel bandwidth values with the Lagrange Multiplier (LM) test in the GWR model.

deer density was high in the center and southern parts of
the UP (Fig. 2). Although the influence of Lake Supe-
rior caused snow depth to be deeper in the northern
UP than in the southern UP, there were several factors
predicted to limit the influence of snow depth on deer
distribution using the local kernel bandwidth model.
For example, patch size coefficients of variances of
northern hardwoods and wetland hardwood/conifers
were higher in the northern UP compared with the
southern UP indicating greater importance of patches

edges (foraging areas) in the north (Fig. 6c and e). The
larger mixed pine patches in the northern UP also had
greater influence on deer density than mixed pine patch
size did in the southern UP (Fig. 6g). This is primarily
because there are fewer cedar swamps, the preferred
cover type for deeryards, in the northern UP. White
cedar patch size had a greater influence on the distribu-
tion of deer in the southern part of UP than in the north,
as indicated by higher values of its localized coefficient
in the south (Fig. 6i).

Table 1
Estimated model coefficients with local and global kernel bandwidth

τ β0(ui, vi)
(Intercept)

β1(ui, vi)
(HV)

β2(ui, vi)
(WV)

β3(ui, vi)
(MA)

β4(ui, vi)
(CA)

β5(ui, vi)
(log(PA))

β6(ui, vi)
(SD)

R2

Global kernel bandwidth GWR model
Max 2.2446 0.9411 0.0016 0.0091 0.0071 0.0831 0.3242 0.1108 0.85
Min 2.2446 −4.8575 0.0004 0.0018 0.0020 0.0174 −0.1322 −0.0387 0.48

Local kernel bandwidth GWR model
Max 0.5366 0.2208 0.0012 0.0039 0.0033 0.0439 0.1680 −0.0172 0.41
Min 0.0032 0.1287 0.0010 0.0034 0.0027 0.0413 0.1306 −0.0208 0.28

Note: HV, northern hardwood patch size coefficient of variance; WV, wetland hardwood/conifer patch size coefficient of variance; MA, patch
area of mixed pine; CA, patch area of white cedar canopy cover>70%; PA, average perimeter-area ratio; SD, snow depth.
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As mentioned above, the local parameter estimates
could be more statistically and ecologically inter-
pretable than those from the global bandwidth model.
This is also the case for the plotted estimates (Fig. 6a–j).

The GWR model with global kernel bandwidth is less
capable of incorporating different effects of snow depth
and factors that can buffer winter severity, such as the
availability of foraging areas.

F
b
b
c
b
p
k

ig. 6. Localized parameter estimates for ecological variables inclu
andwidth, (b) snow depth (SD) by global kernel bandwidth, (c) nor
andwidth, (d) northern hardwood patch size coefficient of variance (H
oefficient of variance (WV) by local kernel bandwidth, (f) wetland har
andwidth, (g) patch area of mixed pine (MA) by local kernel bandwi
atch area of white cedar canopy cover >70% (CA) by local kernel ba
ernel bandwidth, (k) the localizedR2 by local kernel bandwidth, (l) the l
ded in the GWR model including (a) snow depth (SD) by local kernel
thern hardwood patch size coefficient of variance (HV) by local kernel
V) by global kernel bandwidth, (e) wetland hardwood/conifer patch size

dwood/conifer patch size coefficient of variance (WV) by global kernel
dth, (h) patch area of mixed pine (MA) by global kernel bandwidth, (i)
ndwidth, (j) patch area of white cedar canopy cover >70% (CA) by global
ocalizedR2 by global kernel bandwidth.



182 H. Shi et al. / Ecological Modelling 190 (2006) 171–189

Fig. 6. (Continued )

However, the localizedR2 obtained from the global
kernel bandwidth GWR model was greater than that
from the local kernel bandwidth GWR model (Fig. 6k
and l). This might be a result of ignoring the finer scale
local spatial variation by the global kernel bandwidth.
Regardless of their differences, the spatial patterns
were similar. Both models fit better in the northern parts

of UP (higher localizedR2 values) than in the southern
parts of UP.

3.4. Local nonstationarity test

The parameter estimates of the global kernel band-
width GWR model were not constant (i.e., nonstation-
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Fig. 6. (Continued ).

ary) across the study area according to the local param-
eter variation test (p-values <0.05,Table 2). Rejection
of the null hypothesis confirms that the local parame-
ter estimates varied from case to case across the study
area (nonstationarity of parameter estimates). In the
case of the local kernel bandwidth GWR model,t-tests
for locational heterogeneity of the local kernel band-

width GWR model coefficients indicated that not all
parameter estimates were significant (P > 0.05). Thet-
tests for four parameter estimates, including northern
hardwood patch size coefficient of variance, wetland
hardwood/conifer patch size coefficient of variance,
patch area of mixed pine and patch area of white cedar,
demonstrated that locational heterogeneity did exist
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Table 2
F-tests for the local nonstationarity of parameter estimates within
GWR using the global kernel bandwidth

Parameter P-value

Intercept <0.0001
HV 0.0004
WV <0.0001
MA <0.0001
CA 0.0004
log(PA) 0.0002
SD <0.0001

Note: The definitions of HV, WV, MA, CA, PA, and SD are the same
as those inTable 1.

for these predictor variables (p < 0.01). In the case of
average perimeter-area ratio, 69 out of 181 locations
were not significant (α = 0.05). For the local parame-
ter estimates of snow depth, 82 out of 181 locations
were not significant. All local estimates of intercepts
were not significant. Regardless of using the local ker-
nel bandwidth or the global kernel bandwidth in the
GWR models, the parameter estimates were not con-
stant over space according to the local nonstationarity
test.

3.5. Improvement of GWR over OLS

The global kernel bandwidth GWR model per-
formed better than the OLS model, according to an
approximateF-test (Table 3). The model parameter
estimates of Eq.(2) were thus better modeled as a
spatially variable parameter from subarea to subarea
within the whole region. In other words, the simple
linear relationship between deer density and ecologi-
cal variables was not constant across the study area.

The LM test indicated that 94 local kernel band-
widths were significantly different from 0 (Fig. 5).
Hence, at these 94 locations the local kernel bandwidth
GWR model performed better than the OLS model.

Table 3
Goodness-of-fit test for improvement in model fit of GWR over OLS

Source SS DF MS F P-value

O
G
G 2

S ean
s
d

The remaining 87 locations were not significant. These
results were consistent with results of the location het-
erogeneity test. Plots of these data (Fig. 5) indicated:
(1) there was a clear boundary between the significant
and nonsignificant sampling units; (2) there was a lack
of spatial nonstationarity in the northern UP, although
spatial nonstationarity existed in the southern UP; and
(3) relative winter deer density was higher in the non-
stationary southern part of the study region.

4. Discussion

By comparing an OLS model and two GWR models,
we found that spatial heterogeneity in the relationships
of deer distribution to patch metrics and other vari-
ables (e.g., climate) could be more effectively explored
using GWR. The GWR models not only produced
better predictions of deer density than the traditional
OLS model but also provided useful information on
the nature of the deer distribution variation caused by
neighboring environmental factors. Although differ-
ences existed between the results of the local and global
GWR models, the spatial patterns of the parameter esti-
mates showed the same general trends in parameter
variation across the study area. Visualization of the
two GWR model coefficients and statistics in a GIS
highlighted the spatial distribution of the multivariate
relationship under study.

4

the
d ts to
e t
a en-
s and
i com-
p ave
s udy
( ela-
t deer
d
e lts if
n

er-
p tion
o 7;
LS Residuals 75.8 7
WR Improvement 15.6 11.62 1.3419
WR Residuals 60.2 162.38 0.3706 3.621 0.028

S: sum of squares; DF: effective degree of freedom; MS: m
quare;F: F-statistic;P-value: the probability ofF-distribution with
egrees of freedom 7 and 11.62.
.1. Ecological variables

Although we used pellet counts for obtaining
eer density, the adequacy of using pellet coun
stimate deer density has been questioned (Smart e
l., 2004). The actual relationship between deer d
ity and pellet group density is much more complex
s impacted by factors, such as, weather, diet, and
osition of the deer herd. However, experiments h
hown that the simple relationship used in our st
Eq.(1)) is a reasonable approximation of the true r
ionship between pellet group density and actual
ensity (Eberhardt and VanEtten, 1956). More complex
stimates could reduce the interpretability of resu
ot precisely parameterized.

The predictor variables were ecologically int
retable. Snow depth is known to affect the distribu
f deer in wintertime (Kirchhoff and Schoen, 198
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Fleming et al., 1994). White cedar canopy cover >70%
and mixed conifer stands serve as deeryards in the
UP (Blouch, 1984, p. 339). Large northern hardwood
and wetland hardwood/conifer patch size coefficients
of variance (HV and WV) indicate that many forest
edges, the preferred foraging areas of deer, are avail-
able (Chang et al., 1995; Sheehy and Vavra, 1996).
Patch size, patch size coefficient of variance, aver-
age perimeter-area ratio and snow depth have been
widely used as predictor variables in various deer dis-
tribution models (e.g.,Severinghaus, 1972; Fleming et
al., 1994; Lovallo and Tzilkowski, 2003; White et al.,
2004).

As snow depth increases, it is not only hard for
deer to find food but also difficult for them to walk.
Thus, snow-depth should have a negative effect on deer
density as consistently predicted in the local kernel
bandwidth GWR model. However, the global kernel
bandwidth GWR model occasionally predicted a pos-
itive sign for the snow depth parameter that is difficult
to interpret ecologically. Using the global kernel band-
width, there were wide variations and inconsistencies
in the signs of parameter estimates. Three out of seven
parameter estimates for the global kernel bandwidth
GWR model ranged from negative to positive values,
making interpretation difficult.

4.2. Kernel bandwidth

In contrast to the global kernel bandwidth model,
t idth
G nd-
w m-
p hite
c and-
w an
t R
m oth
m low
v ilar
t l
v ent of
t ates
i ow-
e obal
k he
l rnel
b than

being constant (Fig. 5). Therefore, the constant global
kernel bandwidth obtained from cross-validation might
not be locally reliable.

In general, if the bandwidth is large, the weights
decay quickly with distance and the values of the
regression coefficients change rapidly over space
(Fig. 7). Smaller bandwidths thus produce smoother
results (Brunsdon et al., 1996). In other words, the
parameter estimates would be similar if they are close
to each other over space. Our results indicated that
the GWR model with global kernel bandwidth gen-
erally had a small number of neighbors because of the
large bandwidth. The effect was to cause great over-
estimation of spatial heterogeneity and a consequent
underestimation of neighboring values due to steeper
rates of decay in the kernel function (Fig. 7). In com-
parison, the GWR model with local kernel bandwidth
overcame these shortcomings by changing with the
local spatial trend (e.g., the variation of white cedar
patch size). The large local kernel bandwidth in the
center of the study region (dark area) indicated that
the local spatial variation of the landscape features was
higher there than that in other areas (light area,Fig. 5).
This variation was averaged in the global GWR model.

4.3. Local nonstationarity

The rejection of the null hypothesis for local nonsta-
tionarity in the global kernel bandwidth GWR model
might be due to the global (constant) kernel bandwidth
a ors
w val-
u red
l or-
m ter
e idth
w idth
G atial
h and
t eity.
T l fit
t WR
m

by
a ion
( e
c tion-
a are
he parameter estimates of the local kernel bandw
WR model varied little and the local kernel ba
idths differed from location to location. For exa
le, the range of parameter estimates of the w
edar patch size obtained from the global kernel b
idth GWR model was about 24 times larger th

hat obtained from the local kernel bandwidth GW
odel (Table 1). Other parameter estimates for b
odels showed similar ranges of variation. The

ariation of local kernel bandwidth model was sim
o the OLS model estimates (Eq.(6)), indicating loca
ariation close to these estimates. Visual assessm
he contour maps of the significant parameter estim
ndicated the existence of spatial heterogeneity, h
ver, it was not to the extent emphasized by the gl
ernel bandwidth GWR model. A contour plot of t
ocal kernel bandwidth revealed that the local ke
andwidth varied continuously over space rather
nd/or the availability of a small number of neighb
ithin this bandwidth used to estimate parameter
es. In contrast, the OLS model completely igno

ocal nonstationarity by not including spatial inf
ation in the model weighting function. Parame
stimates obtained with the local kernel bandw
ere between the values of the global kernel bandw
WR model, which unadequately accounted for sp
eterogeneity due to the global kernel bandwidth

he OLS model, which ignored spatial heterogen
herefore, the local kernel bandwidth GWR mode

he data better than the global kernel bandwidth G
odel and the OLS model.
Theoretically, local nonstatitionarity is caused

n imperfect data set with missing informat
Fotheringham, 1997). If all important variables wer
ollected and the data set were complete, nonsta
rity would disappear. However, perfect data sets
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Fig. 7. Comparison of different rates of decay in spatial heterogeneity with different kernel bandwidths.

generally unavailable. For example, modeled deer dis-
tribution is affected by sampling design, ecological
preferences of deer, the location, frequency, duration
and intensity of human disturbance, and environmental
stochasticity, among other factors. Additionally, there
is often a positive spatial autocorrelation among neigh-
boring deer populations as a consequence of associa-
tion with microsite (e.g., topography, snow gradient)
heterogeneity that decreases with distance. Because
researchers often do not have complete information
on topographical characteristics and management his-
tory for the study area, it is helpful to apply GWR
to reveal spatial nonstationarity, highlight the gaps in
data, and direct future data collection. Incorporating
spatial information into local modeling methods can
thus greatly improve model predictability.

4.4. Potential of GWR for modeling deer
population dynamic

A number of deer population models have been
developed without considering spatial heterogeneity
and spatial interaction among environmental variables

(Xie et al., 1999; Radeloff et al., 1999; Jensen and
Miller, 2001; Peterson et al., 2003; Yamada et al., 2003;
Grund and Woolf, 2004). These deer population models
require reproduction, sex ratio, age structure, harvest,
and mortality data (Xie et al., 1999, 2001; Peterson et
al., 2003; Grund and Woolf, 2004). However, these data
are difficult to collect and often site specific. Because
local modeling techniques such as GWR take spatial
heterogeneity into account and generate a better model
fit (e.g., the improvement of GWR over OLS) and
more accurate prediction (Fotheringham and Bruns-
don, 1999), we suggest future population dynamic
models should take GWR into consideration.

5. Conclusions

The comparison between the local and global kernel
bandwidth GWR models indicates that the local ker-
nel bandwidth GWR model is preferable to the global
kernel bandwidth GWR model. The basic assumptions
of the local and global kernel bandwidth GWR mod-
els were different, therefore, a statistical test cannot
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Fig. 8. The comparison of predicted deer densities obtained from the
local and global kernel bandwidth GWR models (DD: deer density).

currently be conducted (Pàez et al., 2002a,b). How-
ever, direct comparisons between those two models
showed large differences in predictions (Fig. 8). Spa-
tial heterogeneity was not as precisely modeled by
the global kernel bandwidth GWR model due to the
constant kernel bandwidth that ignored local spatial
variation (Fotheringham et al., 1998). The global ker-
nel bandwidth GWR model primarily addresses spatial
parametric nonstationarity, while the local kernel band-
width GWR model was used to account for spatial
heterogeneity in a spatial context (Pàez et al., 2002a,b).
In addition, the localized parameter estimates obtained
from the local kernel bandwidth GWR model were eas-
ier to interpret statistically and ecologically.

The results of these analyses show that GWR models
can serve as useful tools for exploratory and predic-
tive spatial data analysis. Some statistics, such as ker-
nel bandwidth and local nonstationarity test, can also
serve as useful measurements for deer management
and natural resources conservation. This methodology
also allows the influence of microsite variation and
management activities on deer to be evaluated, tested,
and readily displayed with GIS or statistical graphic
packages to provide land managers or decision mak-
ers with useful information for management purposes.
For example, management activities can be targeted to
indirectly affect deer density by changing land cover
characteristics (e.g., vegetation composition and struc-
ture) or to directly control deer density (e.g., hunting)
in a particular area.
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